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RECURRENT SCHEME
OF THE n�DIMENSIONAL ANALOG
OF COOLEY�TUKEY ALGORITHM

The recurrent scheme of the n�dimensional ana�
logue of Cooley�Tukey algorithm can be introduced as
follows.

Let a periodic (the period is N = 2s, s ∈ Z) complex�
valued function of the integral argument be termed the
n�dimensional periodic signal x( j1, …, jn) at fixed N.

A set of signals , combined with the operations
of addition of two signals x1, x2

(1)

and multiplication of signal x by the complex number c

(2)

where x( j) is the x signal counting in the point j ∈ �
n
,

becomes a linear complex space. The null element in

 is a signal O such that O( j) = 0 for all j ∈ Zn. Let us

introduce the scalar product and norm in :

(3)
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where Bn(N) is a set of integral vectors from [0, N – 1]n.

Let us denote wN = . By an n�multiple
(n�dimensional) discrete Fourier transform (DFT) is

meant the reflection of FN:    matching of a
signal X containing the values

(4)

where j ∈ Bn(N), with the signal x.

Let N = 2s, N
v
 = 2s – v, Δ

v
 = 2v – 1. We construct a

recurrent sequence of bases f0, f1, …, fs, where ft is the
tth basis consisting of Nn bases ft(k), k ∈ Bn(N). The
value of signal ft(k) in the sampling j = ( j1, …, jn), j ∈
Bn(N) will be denoted as ft(k, j).

We designate the set of integral vectors from [0,

N
v

– 1]n as (N) and the set of integral vectors from

[0, Δ
v
 – 1]n as (N).

Let j, being an integer number from the set J =
{0, 1, …, 2v – 1}, be presented in the binary system in

the form  + … + j12 + j0, where ji = 0, 1 for all

i = 0, …, v – 1. The vector ( , …, j1, j0)2 will be said
to be the binary code of the number j. Let us correlate
the number j1 ∈ J, which is specified by the binary
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code ( j0, j1, …, )2, with the number j. The reposi�
tioning rev

v
j = j1 of the set J is called reversed.

The recurrent scheme for calculating the signal

spectrum x ∈  is

(5)

where p = (p1, …, pn), p ∈ (N), l = (l1, …, l2), l ∈

(N), v = 1, …, s and σ1, …, σn are 0 and 1.

PARALLEL ALGORITHM OF n�DIMENSIONAL 
FFT BY THE ANALOG OF THE COOLEY�

TUKEY ALGORITHM

As a preliminary, let us consider the parallel algo�
rithm of two�dimensional FFT, which is the analog to
the Cooley�Tukey algorithm. We apply this algorithm
to calculate recurrent scheme (5) at each step:

(1) The initial signal x
v – 1, v = 1, …, s is repre�

sented in the following form:

(6)

where the subsignal  contains the components of
signal x

v – 1 with different evennesses of coordinates

k1, k2, ,  = 0, …, N/2;

(2) We choose all minors of the second order in the
following form:

(7)

where ai j ∈ , while the elements ai j are not
repeated for different minors.

(3) The major process sends different pairs of rows
i and i + 2v containing minors (7) to each computa�
tional process.

(4) Computational processes calculate the FFT
above minors (7) contained in the obtained rows,
record the result in these rows for the place of calcu�
lated elements, and send it to the major process.

(5) The major process accepts the rows and records
them into the initial positions of the matrix.
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After calculating all three steps, the matrix is nor�
malized by the major process.

During transition to the three�dimensional case,
certain points of the algorithm change. At the first one,
the initial signal is decomposed into eight subsignals
with an evenness of the coordinate differing from four:

(8)

where , ,  = 0, …, N/2.

At the second point, we select three�dimensional
second�order matrices:

(9)

At the third and subsequent points, the major and
calculation processes will operate the planes bk and

 rather than rows.

The transition to the n�dimensional case can be
implemented in a similar manner. Therefore, at the
first point, the initial signal is decomposed into 2n sub�
signals with different evenness. At the second point,
we choose the n�dimensional second�order matrices.
At the third and subsequent points, the processes
works with hyperplanes.

Let us consider the two�dimensional FFT more
fully.

TWO�DIMENSIONAL FFT

The two�dimensional FFT is used for analyzing
two�dimensional signals and image processing
(increasing definition quality and brightness).

Let us consider a signal f that is a two�dimensional
periodic signal with a period of 2s over two coordi�
nates. Samplings are specified as f(x, y), where x, y =
0 : 2s. The discrete Fourier transform for the signal f is
given by the following formula:
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(10)

The two�dimensional FFT F can be calculated by
using one�dimensional FFTs:

(11)

Sums in square brackets are one�dimensional cal�
culations of the FFT over two coordinates of signal f.
Let us transform the given formula with decomposing
coordinates into even and odd components:

(12)

where a, b = 0 : 2s – 1.

It can be shown that  is symmetric with respect
to a = 2s – 1:

(13)

where t = 0 : 2s – 1 – 1. By analogy,  is symmetric
with respect to b = 2s – 1. Then, from (3) and (4) we
obtain
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where a, b = 0 : 2s – 1 – 1.
A number of complex multiplications and addi�

tions of the two�dimensional FFT algorithm, which is
an analog of the Cooley�Tukey one, are 3/4N2log2N
and 2N2log2N in comparison with the calculation
method using the one�dimensional FFT, where
1/2N3log2N of multiplications and N3log2N of addi�
tions.

RESULTS

To test the algorithm, a program was written in the
C++ language using the MPI library. The program
realizes two algorithms: the two�dimensional FFT by
rows and columns (2) and the two�dimensional FFT
by the analog of the Cooley�Tukey algorithm (7). The
two�dimensional FFT by rows and columns is used in
such mathematical packages as MatLab and Math�
Cad, as well as the open library fftw. Only the algo�
rithm by rows and columns (fftw), the simplest in
terms of implementation, acts as an algorithm parallel
to FFT. Testing was conducted on the supercomputer
of the Institute of Space and Information Technology
of Siberian Federal University, which includes 224
IBM Blade HS21computational nodes. Each node
contains 16 Gb of RAM and two quad�core CPU
Xeon E5345@2.33 GHz processors. During testing,
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the program operation time was measured on one
node without paralleling, on one node with paralleling
for eight processes, and on two nodes with paralleling
for eight processes.

Table 1 shows the results of the average measuring
of time in milliseconds at the start on the first node
with paralleling for eight processes. Space shots were
used as the initial signal; an example is shown in Fig. 1.

The calculation result is given in milliseconds.

THREE�DIMENSIONAL FFT

The three�dimensional FFT is executed by a
scheme similar to the two�dimensional case:
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Table 1.  Result of testing one node

N P FFT RC FFT KT

1024 1 490 310
2 310 310

4 220 270
8 180 270

16 180 350
2048 1 2300 1330

2 1550 1260
4 1060 950
8 840 850

16 850 1000
4096 1 9880 5850

2 6240 4590
4 4370 3590

8 3430 3060
16 3740 3390

8192 1 43210 25190
2 26990 19160

4 18550 14870
8 14520 13130

16 14090 11700

Note: N = 2s, N × N is the number of signal samplings x(j1, j2); P is
the number of started MPI�processes; FFT RC is the FFT by
rows and column; FFT KT is the FFT by Kuli–T’uki analog.

Fig. 1. Example of initial signal.
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Fig. 2. Comparison of operation times of different algo�
rithms.
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where g(x, y, z) is the three�dimensional FFT of a sig�
nal of even and odd components of three coordinates
of thinned signal; x2 = xdiv2, y2 = ydiv2, z2 = zdiv2, x2,
y2, z2 is the result of integer division by 2.

The number of complex multiplications and addi�
tions of the two�dimensional FFT algorithm, similar
to the Cooley�Tukey one, are 7/8N3log2N and
3N3log2N in comparison with the calculation method
using the one�dimensional FFT, where N3log2N of
multiplications and N3log2N of additions.

To test the algorithm, a program in C++ was writ�
ten. It realizes two algorithms: the three�dimensional
FFT using combinations of one�dimensional FFTs
and FFT by the Kuli–T’uki analog. Testing was con�
ducted on a computer with a CPU Intel Core i5
2400 GHz processor, 4 Gb of RAM, and Windows 7 OS.
The operation speed of the two algorithms was in sec�
onds. The results are given in Table 2.

As a result of research work, the algorithm of three�
dimensional FFT by the Cooley�Tukey analog was

attained. It works significantly faster than the algo�
rithm of calculating the three�dimensional FFT using
combination of one�dimensional FFTs.
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